Voltage and current are two different measures that are found in electricity. They are both present in every electrical circuit from the flashlight all the way to refrigerators. But, the question is what is the difference? To illustrate the difference between voltage and current we will look at the age old comparison of electricity to water.
Current Flow
Current is a bit easier to illustrate. We can compare it to water in a garden hose. Imagine you have a simple water wheel. To make this water wheel turn you need to pour water over it. Let’s say we have two different sized water hoses. One is 3/4″ and the other is 1″. Now, let’s pour the water over the water wheel with the smaller hose and see what happens. The water wheel turns. Now, the larger hose. What happens? The water wheel turns faster.
This is a result of more water flowing in the larger water hose. More water = faster water wheel. Pretty simple. We need to make sure that when we think of current in the same way as water in a hose that we always think of the hose as full all the time. That way when you turn the hose on you instantly have water flow.
In the early days of electricity it was a commonly held belief that electricity was a fluid. This fluid was made up of tiny particles that would flow into different materials.
Voltage, the Driving Force
Again we are going to compare voltage to the water system. First remember that voltage is the driving or electromotive force that is a part of electrical circuits. How does this translate to water? Think of the voltage as the pressure in a water system.
With the two hoses from the example above how can we make the smaller hose move the water wheel faster? With more pressure of course. So, with more pressure the smaller hose can make the water wheel turn faster. How does this relate to voltage?
Example
Look at the distribution lines above your head next time you are out and about. The wires on these lines carry thousands of volts. However, they are not very big. Remember Ohm’s Law? Let’s say you have a 2,500 watt motor. This is a multi-voltage motor. Meaning that you can wire it a couple of different ways depending on the voltage available. You need to run new wires to this motor, but what size do you need? That depends on the voltage.
Wait, I know what you are saying. Wire is sized by the number of amps. You are correct. However, depending on the voltage we may be able to run a smaller wire therefore possibly saving money. If the voltage in this case is 120 then the amperage will be 2,500/120 = 20.8 amps requiring a 10 gauge wire. If the voltage is 240 then the amperage will be 2,500/240 = 10.4 amps requiring a smaller 12 gauge wire.
Conclusion
Voltage and current are two different quantities that go hand in hand. Voltage is the driving force while current is the flow of electrons in the circuit.
What does the “S” in meter forms stand for?
Thanks,
Bob
The “S” after the meter form designates that the meter is a socket type meter.